LaTeX符号大全及使用 (LaTeX symbols and Use)
Preamble
LaTeX 是一种强大的数学排版工具,在 Markdown、Jupyter Notebook、Obsidian、Typora 等支持 LaTeX 的环境中,我们可以使用 LaTeX 语法来编写数学公式。
这份笔记是笔者在学习LaTeX 使用过程中所收集和归纳的常用符号、命令以及排版技巧,囊括内容非常全面,后续也将持续更新。
1 Basci
1.1 Inline & Display Mode
LaTeX 提供了 两种模式 来书写数学公式:
行内公式(Inline Mode):使用 $...$ 语法独立公式(Display Mode):使用 \[...\] 或 $$...$$ 语法
Inline Formula
行内公式用于正文中插入数学表达式,不会单独占据一行。
Example
文本文本...... $ a^2 + b^2 = c^2 $ ......文本文本
Rendered Output: 文本文本…
a
2
+
b
2
=
c
2
a^2 + b^2 = c^2
a2+b2=c2 …文本文本
Display Formula
独立公式会单独占一行,并居中显示。
Example
\[
a^2 + b^2 = c^2
\]
or:
$$
a^2 + b^2 = c^2
$$
Rendered Output:
a
2
+
b
2
=
c
2
a^2 + b^2 = c^2
a2+b2=c2
1.2 Superscript & Subscript
在 LaTeX 公式中,我们使用 ^(上标) 和 _(下标) 来表示 指数、角标等。
Superscript
使用 ^ 表示 上标(指数):
$ a^2, x^{10}, e^{x+y} $
Rendered Output:
a
2
,
x
10
,
e
x
+
y
a^2, x^{10}, e^{x+y}
a2,x10,ex+y
Subscript
使用 _ 表示 下标(角标):
$ a_1, x_{i+1}, H_{2}O $
Rendered Output:
a
1
,
x
i
+
1
,
H
2
O
a_1, x_{i+1}, H_{2}O
a1,xi+1,H2O
–Note–
✅ ^ 和 _ 仅对其后紧邻的一个字符生效,如果包含多个字符,需 使用大括号 {} 包裹:
$ x^10 $ (正确 ✅)
$ x^{10} $(正确 ✅)
$ x^10_2 $ (正确 ✅)
$ x^10_2 + x_3^{n+1} $(正确 ✅)
$ x^10_2n $ (错误 ❌,因为 `_2n` 没有 `{}` 包裹)
Rendered Output:
x
10
,
x
2
10
,
x
3
n
+
1
x^{10}, x_2^{10}, x_{3}^{n+1}
x10,x210,x3n+1
1.3 Equation Environments
在 LaTeX 中,数学公式可以放在不同的 数学环境 里,以获得更好的格式化效果。常见的数学环境包括:equation、align、cases、multline 和 split。
EnvironmentDescriptionExampleequation单行公式,自动编号
E
=
m
c
2
\begin{equation} E = mc^2 \end{equation}
E=mc2align多行公式,支持对齐,使用 & 对齐点
E
=
m
c
2
F
=
m
a
\begin{align} E &= mc^2 \\ F &= ma \end{align}
EF=mc2=macases适用于分段函数的定义
{
x
2
,
if
x
≥
0
−
x
,
if
x
<
0
\begin{cases} x^2, & \text{if } x \geq 0 \\ -x, & \text{if } x < 0 \end{cases}
{x2,−x,if x≥0if x<0multline多行公式,自动换行,长公式分段显示本环境不支持split在 equation 环境中拆分长公式,适合长公式的排版
x
=
y
+
z
=
w
+
t
\begin{equation} \begin{split} x &= y + z \\ &= w + t \end{split} \end{equation}
x=y+z=w+t
1. equation Environment
equation 环境会自动为公式编号,适用于 长篇文档。
\[
\begin{equation}
E = mc^2
\end{equation}
\]
Rendered Output:
E
=
m
c
2
\begin{equation} E = mc^2 \end{equation}
E=mc2
2. align Environment
align 用于对齐多行公式,& 代表对齐点。
\[
\begin{aligned}
x &= y + 2z \\
&= 3y - 4
\end{aligned}
\]
Rendered Output:
x
=
y
+
2
z
=
3
y
−
4
\begin{aligned} x &= y + 2z \\ &= 3y - 4 \end{aligned}
x=y+2z=3y−4
3. cases Environment
cases 适用于分段定义的数学函数。
\[
f(x) =
\begin{cases}
x^2, & \text{if } x \geq 0 \\
-x, & \text{if } x < 0
\end{cases}
\]
Rendered Output:
f
(
x
)
=
{
x
2
,
if
x
≥
0
−
x
,
if
x
<
0
f(x) = \begin{cases} x^2, & \text{if } x \geq 0 \\ -x, & \text{if } x < 0 \end{cases}
f(x)={x2,−x,if x≥0if x<0
4. multline Environment
multline 用于多行公式,并将公式分行显示,第一个可用位置作为换行点。
\[
\begin{multline}
x = y + z + w + t \\
+ a + b + c
\end{multline}
\]
Rendered Output:
本环境暂不支持显示
5. split Environment
split 用于将公式拆分成多行,并与 equation 环境结合,适用于拆分长公式。
\[
\begin{equation}
\begin{split}
x &= y + z \\ &= w + t
\end{split}
\end{equation}
\]
Rendered Output:
x
=
y
+
z
=
w
+
t
\begin{equation} \begin{split} x &= y + z \\ &= w + t \end{split} \end{equation}
x=y+z=w+t
1.4 Spacing in Math Mode
LaTeX 提供了一些空格控制命令,用于调整符号之间的间距。
SymbolCommandSymbolCommandSymbolCommand
a
b
a \quad b
aba \quad b
a
b
a \, b
aba , b
a
b
a \! b
aba ! b
x
=
constant
x = \text{constant}
x=constantx = \text{constant}
a
b
a \; b
aba ; b
a
b
a \: b
aba : b
Example:
\[
a \quad b, \quad a \, b, \quad a \! b
\]
Rendered Output:
a
b
,
a
b
,
a
b
a \quad b, \quad a \, b, \quad a \! b
ab,ab,ab
Inline Text in Math Mode
在数学模式中,使用 \text{} 来插入普通文本,以保持文本格式正确。
Example:
\[
x = 5, \quad \text{where } x \text{ is the unknown variable.}
\]
Rendered Output:
x
=
5
,
where
x
is the unknown variable.
x = 5, \quad \text{where } x \text{ is the unknown variable.}
x=5,where x is the unknown variable.
1.5 Using LaTeX in Markdown
在不同的 Markdown 编辑器中,LaTeX 的支持情况如下:
编辑器支持情况备注Jupyter Notebook✅ 完全支持需安装 MathJaxTypora✅ 完全支持需开启 Markdown 数学Obsidian✅ 完全支持内置 MathJaxVS Code + Markdown Preview Enhanced✅ 完全支持需安装插件GitHub Markdown⚠ 部分支持仅支持 $...$,不支持 \[\]
1.6 Test
可以尝试以下 LaTeX 代码,并查看渲染效果:
1. $\frac{a}{b}$
2. $\sqrt{x^2 + y^2}$
3. $\sum_{i=1}^{n} i^2$
4. $\int_{0}^{\infty} e^{-x}dx$
5. $f(x) = \begin{cases} x^2, & x \geq 0 \\ -x, & x < 0 \end{cases}$
2 Greek Letters.
希腊字母
Lowercase Greek Letters.
SymbolCommandSymbolCommandSymbolCommand
α
\alpha
α\alpha
β
\beta
β\beta
γ
\gamma
γ\gamma
δ
\delta
δ\delta
ϵ
\epsilon
ϵ\epsilon
ε
\varepsilon
ε\varepsilon
ζ
\zeta
ζ\zeta
η
\eta
η\eta
θ
\theta
θ\theta
ϑ
\vartheta
ϑ\vartheta
ι
\iota
ι\iota
κ
\kappa
κ\kappa
λ
\lambda
λ\lambda
μ
\mu
μ\mu
ν
\nu
ν\nu
ξ
\xi
ξ\xi
π
\pi
π\pi
ϖ
\varpi
ϖ\varpi
ρ
\rho
ρ\rho
ϱ
\varrho
ϱ\varrho
σ
\sigma
σ\sigma
ς
\varsigma
ς\varsigma
τ
\tau
τ\tau
υ
\upsilon
υ\upsilon
ϕ
\phi
ϕ\phi
φ
\varphi
φ\varphi
χ
\chi
χ\chi
ψ
\psi
ψ\psi
ω
\omega
ω\omega
Uppercase Greek Letters.
SymbolCommandSymbolCommandSymbolCommand
Γ
\Gamma
Γ\Gamma
Δ
\Delta
Δ\Delta
Θ
\Theta
Θ\Theta
Λ
\Lambda
Λ\Lambda
Ξ
\Xi
Ξ\Xi
Π
\Pi
Π\Pi
Σ
\Sigma
Σ\Sigma
Υ
\Upsilon
Υ\Upsilon
Φ
\Phi
Φ\Phi
Ψ
\Psi
Ψ\Psi
Ω
\Omega
Ω\Omega
ℵ
\aleph
ℵ\aleph
ℶ
\beth
ℶ\beth
ℸ
\daleth
ℸ\daleth
ℷ
\gimel
ℷ\gimel
有代码的大写希腊字母,直接敲获得正体,使用\var前缀转化为斜体
如:\Gamma
Γ
\Gamma
Γ(正) \varGamma
Γ
\varGamma
Γ(斜)
没有代码的大写希腊字母,直接敲得斜体,使用\text 命令转化为正体
如:T
T
T
T直接敲(斜) \text T
T
\text T
T(正)
(也可以使用\rm将下一个单词变正,\text T的作用范围只是下一个字母;可以尝试加{})
3 Math Mode Accents
在 LaTeX 数学模式中,我们可以使用 重音符号 来表示:
导数(Newton 记号)单位向量逼近(傅里叶变换)复数共轭上下划线用于变量强调
Summary Table
SymbolCommandSymbolCommandSymbolCommand
a
^
\hat{a}
a^\hat{a}
a
ˇ
\check{a}
aˇ\check{a}
a
˙
\dot{a}
a˙\dot{a}
a
˘
\breve{a}
a˘\breve{a}
a
ˊ
\acute{a}
aˊ\acute{a}
a
¨
\ddot{a}
a¨\ddot{a}
a
ˋ
\grave{a}
aˋ\grave{a}
a
~
\tilde{a}
a~\tilde{a}
a
˚
\mathring{a}
a˚\mathring{a}
a
ˉ
\bar{a}
aˉ\bar{a}
a
⃗
\vec{a}
a
\vec{a}
A
B
→
\overrightarrow{AB}
AB
\overrightarrow{AB}
C
D
←
\overleftarrow{CD}
CD
\overleftarrow{CD}
x
y
z
‾
\overline{xyz}
xyz\overline{xyz}
a
b
c
‾
\underline{abc}
abc\underline{abc}
A
^
\widehat{A}
A
\widehat{A}
A
~
\widetilde{A}
A
\widetilde{A}
a
+
b
+
c
⏞
\overbrace{a + b + c}
a+b+c
\overbrace{a + b + c}
1
+
2
+
⋯
+
n
⏟
\underbrace{1 + 2 + \dots + n}
1+2+⋯+n\underbrace{1 + 2 + \dots + n}
3.1 Superscripts
用于:
单位向量(
x
^
\hat{x}
x^)近似表示(
x
~
\tilde{x}
x~)一阶/二阶导数(
x
˙
\dot{x}
x˙,
x
¨
\ddot{x}
x¨)
SymbolCommandDescription
x
^
\hat{x}
x^\hat{x}单位向量
x
y
^
\widehat{xy}
xy
\widehat{xy}大范围的帽子符号
x
~
\tilde{x}
x~\tilde{x}近似表示(如傅里叶变换)
a
b
c
~
\widetilde{abc}
abc
\widetilde{abc}大范围的波浪符号
x
˙
\dot{x}
x˙\dot{x}一阶导数(微分)
x
¨
\ddot{x}
x¨\ddot{x}二阶导数(加速度)
Example
$\hat{x}, \widehat{xy}, \tilde{x}, \widetilde{abc}, \dot{x}, \ddot{x}$
Rendered Output
x
^
,
x
y
^
,
x
~
,
a
b
c
~
,
x
˙
,
x
¨
\hat{x}, \widehat{xy}, \tilde{x}, \widetilde{abc}, \dot{x}, \ddot{x}
x^,xy
,x~,abc
,x˙,x¨
3.2 Vector Symbols
用于:
物理和工程中的向量(
v
⃗
\vec{v}
v
)几何中的方向向量(
A
B
→
\overrightarrow{AB}
AB
)
SymbolCommandDescription
v
⃗
\vec{v}
v
\vec{v}标准向量符号
A
B
→
\overrightarrow{AB}
AB
\overrightarrow{AB}带方向的向量
C
D
←
\overleftarrow{CD}
CD
\overleftarrow{CD}反向向量
Example
$\vec{v}, \overrightarrow{AB}, \overleftarrow{CD}$
Rendered Output
v
⃗
,
A
B
→
,
C
D
←
\vec{v}, \overrightarrow{AB}, \overleftarrow{CD}
v
,AB
,CD
3.3 Overline & Underline
用于:
复共轭(
z
‾
\overline{z}
z)变量强调(
x
‾
\underline{x}
x)
SymbolCommandDescription
x
+
y
‾
\overline{x+y}
x+y\overline{x+y}复共轭,均值等
a
b
c
‾
\underline{abc}
abc\underline{abc}变量下划线
a
+
b
+
c
⏞
Sum
\overbrace{a + b + c}^{\text{Sum}}
a+b+c
Sum\overbrace{a + b + c}^{\text{Sum}}括号上标注
1
+
2
+
⋯
+
n
⏟
n-term sum
\underbrace{1 + 2 + \dots + n}_{\text{n-term sum}}
n-term sum
1+2+⋯+n\underbrace{1 + 2 + \dots + n}_{\text{n-term sum}}括号下标注
Example
$\overline{x+y}, \underline{abc}, \overbrace{a + b + c}^{\text{Sum}}, \underbrace{1 + 2 + \dots + n}_{\text{n-term sum}}$
Rendered Output
x
+
y
‾
,
a
b
c
‾
,
a
+
b
+
c
⏞
Sum
,
1
+
2
+
⋯
+
n
⏟
n-term sum
\overline{x+y}, \underline{abc}, \overbrace{a + b + c}^{\text{Sum}}, \underbrace{1 + 2 + \dots + n}_{\text{n-term sum}}
x+y,abc,a+b+c
Sum,n-term sum
1+2+⋯+n
4 Math Constructs
在 LaTeX 数学模式中,可以使用各种数学结构来表示 指数、下标、分数、根号、求和、积分、极限、对数、三角函数 等。
4.1 Exponents and Subscripts
SymbolCommandDescription
a
2
a^2
a2a^2上标符号,表示指数运算。
x
i
x_i
xix_i下标符号,常用于表示索引或元素的位置。
y
m
+
n
y^{m+n}
ym+ny^{m+n}上标符号,可以表示多项式中的指数。
z
i
,
j
z_{i,j}
zi,jz_{i,j}下标符号,常用于表示矩阵或多维数组中的元素。
Example
$a^2, x_i, y^{m+n}, z_{i,j}$
Rendered Output
a
2
,
x
i
,
y
m
+
n
,
z
i
,
j
a^2, x_i, y^{m+n}, z_{i,j}
a2,xi,ym+n,zi,j
4.2 Fractions
SymbolCommandDescription
a
b
\frac{a}{b}
ba\frac{a}{b}普通分数格式,适用于行内公式。
a
b
\dfrac{a}{b}
ba\dfrac{a}{b}显示模式下的分数,显示更大,适合单独一行的公式。
a
b
\tfrac{a}{b}
ba\tfrac{a}{b}小尺寸的分数,适用于行内公式。
Example
$\frac{a}{b}, \dfrac{a}{b}, \tfrac{a}{b}$
Rendered Output
a
b
,
a
b
,
a
b
\frac{a}{b}, \dfrac{a}{b}, \tfrac{a}{b}
ba,ba,ba
4.3 Radicals
SymbolCommandDescription
2
\sqrt{2}
2
\sqrt{2}平方根,表示
2
2
2 的平方根。
x
3
\sqrt[3]{x}
3x
\sqrt[3]{x}立方根,表示
x
x
x 的三次根。
Example
$\sqrt{2}, \sqrt[3]{x}$
Rendered Output
2
,
x
3
\sqrt{2}, \sqrt[3]{x}
2
,3x
4.4 Summation and Integration
SymbolCommandDescription
∑
i
=
1
n
i
2
\sum_{i=1}^{n} i^2
∑i=1ni2\sum_{i=1}^{n} i^2求和符号,表示累加运算。
∏
i
=
1
n
i
\prod_{i=1}^{n} i
∏i=1ni\prod_{i=1}^{n} i积符号,表示累乘运算。
∫
0
∞
e
−
x
d
x
\int_{0}^{\infty} e^{-x}dx
∫0∞e−xdx\int_{0}^{\infty} e^{-x}dx积分符号,表示对函数的积分,通常用于计算连续量。
∬
D
f
(
x
,
y
)
d
x
d
y
\iint_D f(x,y)dxdy
∬Df(x,y)dxdy\iint_D f(x,y)dxdy双重积分,用于二维空间的积分。
∭
V
f
(
x
,
y
,
z
)
d
x
d
y
d
z
\iiint_V f(x,y,z)dxdydz
∭Vf(x,y,z)dxdydz\iiint_V f(x,y,z)dxdydz三重积分,用于三维空间的积分。
Example
$\sum_{i=1}^{n} i^2, \prod_{i=1}^{n} i, \int_{0}^{\infty} e^{-x}dx$
Rendered Output
∑
i
=
1
n
i
2
,
∏
i
=
1
n
i
,
∫
0
∞
e
−
x
d
x
\sum_{i=1}^{n} i^2, \prod_{i=1}^{n} i, \int_{0}^{\infty} e^{-x}dx
i=1∑ni2,i=1∏ni,∫0∞e−xdx
4.5 Limits, Logarithms, and Trigonometric Functions
SymbolCommandDescription
arccos
\arccos
arccos\arccos反余弦函数,表示角度的反函数。
arcsin
\arcsin
arcsin\arcsin反正弦函数,表示角度的反函数。
arctan
\arctan
arctan\arctan反正切函数,表示角度的反函数。
cos
\cos
cos\cos余弦函数,常用于三角形计算和周期性现象。
cosh
\cosh
cosh\cosh双曲余弦函数,常用于描述双曲线的性质。
cot
\cot
cot\cot余切函数,是正切函数的倒数。
csc
\csc
csc\csc余割函数,是正弦函数的倒数。
deg
\deg
deg\deg度数符号,表示角度单位。
det
\det
det\det行列式,表示矩阵的行列式值。
exp
\exp
exp\exp指数函数,表示以自然常数
e
e
e 为底的指数函数。
gcd
\gcd
gcd\gcd最大公约数,用于表示两个数的最大公约数。
hom
\hom
hom\hom同态,用于代数结构中的映射。
ker
\ker
ker\ker核,表示线性变换的核空间。
lim
\lim
lim\lim极限符号,表示一个函数在某点的极限值。
lg
\lg
lg\lg常用对数,以
10
10
10 为底的对数。
lim sup
\limsup
limsup\limsup上极限,表示一列数的上极限。
ln
\ln
ln\ln自然对数,以
e
e
e 为底的对数。
log
\log
log\log对数,一般情况下指任意底数的对数。
min
\min
min\min最小值,表示函数的最小值。
Pr
\Pr
Pr\Pr概率,表示事件发生的概率。
sup
\sup
sup\sup上确界,表示函数的上界。
sinh
\sinh
sinh\sinh双曲正弦函数,常用于描述双曲线的性质。
sin
\sin
sin\sin正弦函数,常用于三角形计算和周期性现象。
tan
\tan
tan\tan正切函数,常用于角度计算。
sec
\sec
sec\sec正割函数,是余弦函数的倒数。
tanh
\tanh
tanh\tanh双曲正切函数,常用于描述双曲线的性质。
inf
\inf
inf\inf下确界,表示函数的下界。
max
\max
max\max最大值,表示函数的最大值。
arg
\arg
arg\arg辐角,表示复数的相位角。
lim inf
\liminf
liminf\liminf下极限,表示一列数的下极限。
Example
$\lim_{x \to \infty} f(x), \log x, \ln x, \sin x, \cos x, \tan x$
Rendered Output
lim
x
→
∞
f
(
x
)
,
log
x
,
ln
x
,
sin
x
,
cos
x
,
tan
x
\lim_{x \to \infty} f(x), \log x, \ln x, \sin x, \cos x, \tan x
x→∞limf(x),logx,lnx,sinx,cosx,tanx
5 Delimiters
在 LaTeX 数学模式中,分隔符用于 包围数学表达式,例如 括号、绝对值、范数 等。使用 \left 和 \right 使括号大小自适应内容。
5.1 Standard Delimiters
SymbolCommandDescription
(
a
+
b
)
(a+b)
(a+b)(a+b)普通小括号
[
a
+
b
]
[a+b]
[a+b][a+b]普通方括号
a
+
b
{a+b}
a+b{a+b}花括号,用于集合表示等
⟨
a
,
b
⟩
\langle a, b \rangle
⟨a,b⟩\langle a, b \rangle尖括号,常用于内积或向量表示
Example
$(a+b), [a+b], \{a+b\}, \langle a, b \rangle$
Rendered Output
(
a
+
b
)
,
[
a
+
b
]
,
{
a
+
b
}
,
⟨
a
,
b
⟩
(a+b), [a+b], \{a+b\}, \langle a, b \rangle
(a+b),[a+b],{a+b},⟨a,b⟩
5.2 Resizable Delimiters
SymbolCommandDescription
(
x
+
y
)
\left( x+y \right)
(x+y)\left( x+y \right)自动调节大小的小括号
[
x
+
y
]
\left[ x+y \right]
[x+y]\left[ x+y \right]自动调节大小的方括号
{
x
+
y
}
\{ x+y \}
{x+y}\left{ x+y \right}自动调节大小的花括号
⟨
x
+
y
⟩
\left\langle x+y \right\rangle
⟨x+y⟩\left\langle x+y \right\rangle自动调节大小的尖括号
Example
\left( x+y \right), \left[ x+y \right], \left\{ x+y \right\}, \left\langle x+y \right\rangle
Rendered Output
(
x
+
y
)
,
[
x
+
y
]
,
{
x
+
y
}
,
⟨
x
+
y
⟩
\left( x+y \right), \left[ x+y \right], \left\{ x+y \right\}, \left\langle x+y \right\rangle
(x+y),[x+y],{x+y},⟨x+y⟩
5.3 Absolute Value and Norm
Example
|x|, \left| x+y \right|, \|x\|, \left\| x+y \right\|
Rendered Output
∣
x
∣
,
∣
x
+
y
∣
,
∥
x
∥
,
∥
x
+
y
∥
|x|, \left| x+y \right|, \|x\|, \left\| x+y \right\|
∣x∣,∣x+y∣,∥x∥,∥x+y∥
5.4 Floor and Ceiling Functions
SymbolCommandDescription
⌊
x
⌋
\lfloor x \rfloor
⌊x⌋\lfloor x \rfloor向下取整符号
⌊
x
⌋
\left\lfloor x \right\rfloor
⌊x⌋\left\lfloor x \right\rfloor自适应大小的向下取整
⌈
x
⌉
\lceil x \rceil
⌈x⌉\lceil x \rceil向上取整符号
⌈
x
⌉
\left\lceil x \right\rceil
⌈x⌉\left\lceil x \right\rceil自适应大小的向上取整
Example
\lfloor x \rfloor, \left\lfloor x \right\rfloor, \lceil x \rceil, \left\lceil x \right\rceil
Rendered Output
⌊
x
⌋
,
⌊
x
⌋
,
⌈
x
⌉
,
⌈
x
⌉
\lfloor x \rfloor, \left\lfloor x \right\rfloor, \lceil x \rceil, \left\lceil x \right\rceil
⌊x⌋,⌊x⌋,⌈x⌉,⌈x⌉
5.5 Additional Delimiters
SymbolCommandSymbolCommandSymbolCommand
⟮
\lgroup
⟮\lgroup
⟯
\rgroup
⟯\rgroupno support\arrowvertno support\Arrowvert
{
\lbrace
{\lbrace
}
\rbrace
}\rbrace
⎰
\lmoustache
⎰\lmoustache
⎱
\rmoustache
⎱\rmoustacheno support\bracevert
6 Variable-sized Symbols
在 LaTeX 中,某些数学符号会根据公式模式的不同自动调整大小。特别是在独立公式模式下,这些符号通常会变大,以增强可读性和表现力。
SymbolCommandDescription
∑
\sum
∑\sum求和符号
∏
\prod
∏\prod积符号
∐
\coprod
∐\coprod共积符号
∫
\int
∫\int积分符号
∮
\oint
∮\oint曲线积分符号
⨄
\biguplus
⨄\biguplus并积符号
⋂
\bigcap
⋂\bigcap交集符号
⋃
\bigcup
⋃\bigcup并集符号
⨂
\bigotimes
⨂\bigotimes张量积符号
⋁
\bigvee
⋁\bigvee并(大写)符号
⋀
\bigwedge
⋀\bigwedge交(大写)符号
⨀
\bigodot
⨀\bigodot点积符号
⨆
\bigsqcup
⨆\bigsqcup并集(带上标)
\sum, \prod, \coprod, \int, \oint, \biguplus, \bigcap, \bigcup, \bigotimes, \bigvee, \bigwedge, \bigodot, \bigsqcup
渲染后的效果:
∑
,
∏
,
∐
,
∫
,
∮
,
⨄
,
⋂
,
⋃
,
⨂
,
⋁
,
⋀
,
⨀
,
⨆
\sum, \prod, \coprod, \int, \oint, \biguplus, \bigcap, \bigcup, \bigotimes, \bigvee, \bigwedge, \bigodot, \bigsqcup
∑,∏,∐,∫,∮,⨄,⋂,⋃,⨂,⋁,⋀,⨀,⨆
7 Binary Operation/Relation Symbols
Operators Symbols
SymbolCommandSymbolCommandSymbolCommand
±
\pm
±\pm
∓
\mp
∓\mp
×
\times
×\times
÷
\div
÷\div
⋅
\cdot
⋅\cdot
∗
\ast
∗\ast
⋆
\star
⋆\star
†
\dagger
†\dagger
‡
\ddagger
‡\ddagger
⨿
\amalg
⨿\amalg
∩
\cap
∩\cap
∪
\cup
∪\cup
⊎
\uplus
⊎\uplus
⊓
\sqcap
⊓\sqcap
⊔
\sqcup
⊔\sqcup
∨
\vee
∨\vee
∧
\wedge
∧\wedge
⊕
\oplus
⊕\oplus
⊖
\ominus
⊖\ominus
⊗
\otimes
⊗\otimes
∘
\circ
∘\circ
∙
\bullet
∙\bullet
⋄
\diamond
⋄\diamond
⊲
\lhd
⊲\lhd
⊳
\rhd
⊳\rhd
⊴
\unlhd
⊴\unlhd
⊵
\unrhd
⊵\unrhd
⊘
\oslash
⊘\oslash
⊙
\odot
⊙\odot
◯
\bigcirc
◯\bigcirc
◃
\triangleleft
◃\triangleleft
◊
\Diamond
◊\Diamond
△
\bigtriangleup
△\bigtriangleup
▽
\bigtriangledown
▽\bigtriangledown
□
\Box
□\Box
▹
\triangleright
▹\triangleright
∖
\setminus
∖\setminus
≀
\wr
≀\wr
x
\sqrt{x}
x
\sqrt{x}
x
∘
x^{\circ}
x∘x^{\circ}
▽
\triangledown
▽\triangledown
x
n
\sqrt[n]{x}
nx
\sqrt[n]{x}
a
x
a^x
axa^x
a
x
y
z
a^{xyz}
axyza^{xyz}
a
x
a_x
axa_x
Relations Symbols
SymbolCommandSymbolCommandSymbolCommand
≤
\le
≤\le
≥
\ge
≥\ge
≠
\neq
=\neq
∼
\sim
∼\sim
≪
\ll
≪\ll
≫
\gg
≫\gg
≐
\doteq
≐\doteq
≃
\simeq
≃\simeq
⊂
\subset
⊂\subset
⊃
\supset
⊃\supset
≈
\approx
≈\approx
≍
\asymp
≍\asymp
⊆
\subseteq
⊆\subseteq
⊇
\supseteq
⊇\supseteq
≅
\cong
≅\cong
⌣
\smile
⌣\smile
⊏
\sqsubset
⊏\sqsubset
⊐
\sqsupset
⊐\sqsupset
≡
\equiv
≡\equiv
⌢
\frown
⌢\frown
⊑
\sqsubseteq
⊑\sqsubseteq
⊒
\sqsupseteq
⊒\sqsupseteq
∝
\propto
∝\propto
⋈
\bowtie
⋈\bowtie
∈
\in
∈\in
∋
\ni
∋\ni
≺
\prec
≺\prec
≻
\succ
≻\succ
⊢
\vdash
⊢\vdash
⊣
\dashv
⊣\dashv
⪯
\preceq
⪯\preceq
⪰
\succeq
⪰\succeq
⊨
\models
⊨\models
⊥
\perp
⊥\perp
∥
\parallel
∥\parallel
∣
\mid
∣\mid
≏
\bumpeq
≏\bumpeq
Negated Relations Symbols
SymbolCommandSymbolCommandSymbolCommand
∤
\nmid
∤\nmid
≰
\nleq
≰\nleq
≱
\ngeq
≱\ngeq
≁
\nsim
≁\nsim
≆
\ncong
≆\ncong
∦
\nparallel
∦\nparallel
≮
\not<
<\not<
≯
\not>
>\not>
≠
\not=
=\not=, \neq, \ne
≰
\not\le
≤\not\le
≱
\not\ge
≥\not\ge
≁
\not\sim
∼\not\sim
≉
\not\approx
≈\not\approx
≇
\not\cong
≅\not\cong
≢
\not\equiv
≡\not\equiv
∦
\not\parallel
∥\not\parallel
≮
\nless
≮\nless
≯
\ngtr
≯\ngtr
⪇
\lneq
⪇\lneq
⪈
\gneq
⪈\gneq
⋦
\lnsim
⋦\lnsim
≨
\lneqq
≨\lneqq
≩
\gneqq
≩\gneqq
8 Arrow symbols
Standard Arrows
SymbolCommandSymbolCommandSymbolCommand
←
\leftarrow
←\leftarrow
⟵
\longleftarrow
⟵\longleftarrow
↑
\uparrow
↑\uparrow
⇐
\Leftarrow
⇐\Leftarrow
⟸
\Longleftarrow
⟸\Longleftarrow
⇑
\Uparrow
⇑\Uparrow
→
\rightarrow
→\rightarrow
⟶
\longrightarrow
⟶\longrightarrow
↓
\downarrow
↓\downarrow
⇒
\Rightarrow
⇒\Rightarrow
⟹
\Longrightarrow
⟹\Longrightarrow
⇓
\Downarrow
⇓\Downarrow
↔
\leftrightarrow
↔\leftrightarrow
⟷
\longleftrightarrow
⟷\longleftrightarrow
↕
\updownarrow
↕\updownarrow
⇔
\Leftrightarrow
⇔\Leftrightarrow
⟺
\Longleftrightarrow
⟺\Longleftrightarrow
⇕
\Updownarrow
⇕\Updownarrow
A
B
→
\overrightarrow{AB}
AB
\overrightarrow{AB}
A
B
←
\overleftarrow{AB}
AB
\overleftarrow{AB}
A
B
↔
\overleftrightarrow{AB}
AB
\overleftrightarrow{AB}
Mapping and Hook Arrows
SymbolCommandSymbolCommandSymbolCommand
↦
\mapsto
↦\mapsto
⟼
\longmapsto
⟼\longmapsto
↗
\nearrow
↗\nearrow
↩
\hookleftarrow
↩\hookleftarrow
↪
\hookrightarrow
↪\hookrightarrow
↘
\searrow
↘\searrow
↼
\leftharpoonup
↼\leftharpoonup
⇀
\rightharpoonup
⇀\rightharpoonup
↙
\swarrow
↙\swarrow
↽
\leftharpoondown
↽\leftharpoondown
⇁
\rightharpoondown
⇁\rightharpoondown
↖
\nwarrow
↖\nwarrow
⇌
\rightleftharpoons
⇌\rightleftharpoons
⇝
\leadsto
⇝\leadsto
Extended Arrows
SymbolCommandSymbolCommandSymbolCommand
⇢
\dashrightarrow
⇢\dashrightarrow
⇠
\dashleftarrow
⇠\dashleftarrow
⇇
\leftleftarrows
⇇\leftleftarrows
⇆
\leftrightarrows
⇆\leftrightarrows
⇐
\Leftarrow
⇐\Leftarrow
↞
\twoheadleftarrow
↞\twoheadleftarrow
↢
\leftarrowtail
↢\leftarrowtail
↫
\looparrowleft
↫\looparrowleft
⇋
\leftrightharpoons
⇋\leftrightharpoons
↶
\curvearrowleft
↶\curvearrowleft
↺
\circlearrowleft
↺\circlearrowleft
↰
\Lsh
↰\Lsh
⇈
\upuparrows
⇈\upuparrows
↿
\upharpoonleft
↿\upharpoonleft
⇃
\downharpoonleft
⇃\downharpoonleft
⊸
\multimap
⊸\multimap
↭
\leftrightsquigarrow
↭\leftrightsquigarrow
⇉
\rightrightarrows
⇉\rightrightarrows
⇄
\rightleftarrows
⇄\rightleftarrows
⇉
\rightrightarrows
⇉\rightrightarrows
⇆
\leftrightarrows
⇆\leftrightarrows
↠
\twoheadrightarrow
↠\twoheadrightarrow
↣
\rightarrowtail
↣\rightarrowtail
↬
\looparrowright
↬\looparrowright
⇌
\rightleftharpoons
⇌\rightleftharpoons
↷
\curvearrowright
↷\curvearrowright
↻
\circlearrowright
↻\circlearrowright
↱
\Rsh
↱\Rsh
⇊
\downdownarrows
⇊\downdownarrows
↾
\upharpoonright
↾\upharpoonright
⇂
\downharpoonright
⇂\downharpoonright
⇝
\rightsquigarrow
⇝\rightsquigarrow
Negated Arrows
SymbolCommandSymbolCommandSymbolCommand
↚
\nleftarrow
↚\nleftarrow
↛
\nrightarrow
↛\nrightarrow
↮
\nleftrightarrow
↮\nleftrightarrow
⇏
\nRightarrow
⇏\nRightarrow
⇍
\nLeftarrow
⇍\nLeftarrow
⇎
\nLeftrightarrow
⇎\nLeftrightarrow
9 Miscellaneous symbols
SymbolCommandSymbolCommandSymbolCommand
∞
\infty
∞\infty
∇
\nabla
∇\nabla
∂
\partial
∂\partial
ð
\eth
ð\eth
♣
\clubsuit
♣\clubsuit
♢
\diamondsuit
♢\diamondsuit
♡
\heartsuit
♡\heartsuit
♠
\spadesuit
♠\spadesuit
⋯
\cdots
⋯\cdots
⋮
\vdots
⋮\vdots
…
\ldots
…\ldots
⋱
\ddots
⋱\ddots
ℑ
\Im
ℑ\Im
ℜ
\Re
ℜ\Re
∀
\forall
∀\forall
∃
\exists
∃\exists
∄
\nexists
∄\nexists
∅
\emptyset
∅\emptyset
∅
\varnothing
∅\varnothing
ı
\imath
\imath
ȷ
\jmath
\jmath
ℓ
\ell
ℓ\ell
∭
\iiint
∭\iiint
∬
\iint
∬\iint
♯
\sharp
♯\sharp
♭
\flat
♭\flat
♮
\natural
♮\natural
k
\Bbbk
k\Bbbk
★
\bigstar
★\bigstar
╲
\diagdown
╲\diagdown
╱
\diagup
╱\diagup
◊
\Diamond
◊\Diamond
Ⅎ
\Finv
Ⅎ\Finv
⅁
\Game
⅁\Game
ℏ
\hbar
ℏ\hbar
ℏ
\hslash
ℏ\hslash
◊
\lozenge
◊\lozenge
℧
\mho
℧\mho
′
\prime
′\prime
□
\square
□\square
√
\surd
√\surd
℘
\wp
℘\wp
∠
\angle
∠\angle
∡
\measuredangle
∡\measuredangle
∢
\sphericalangle
∢\sphericalangle
∁
\complement
∁\complement
▽
\triangledown
▽\triangledown
△
\triangle
△\triangle
△
\vartriangle
△\vartriangle
⧫
\blacklozenge
⧫\blacklozenge
■
\blacksquare
■\blacksquare
▲
\blacktriangle
▲\blacktriangle
▼
\blacktriangledown
▼\blacktriangledown
‵
\backprime
‵\backprime
Ⓢ
\circledS
Ⓢ\circledS
§
\S
§\S
LaTeX
\LaTeX
LATEX\LaTeX
10 Other Styles (math mode only)
StyleSymbolCommandCaligraphic letters
A
,
B
,
C
,
D
\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}
A,B,C,D etc.\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D} etc.Mathbb letters
A
,
B
,
C
,
D
\mathbb{A}, \mathbb{B}, \mathbb{C}, \mathbb{D}
A,B,C,D etc.\mathbb{A}, \mathbb{B}, \mathbb{C}, \mathbb{D} etc.Mathfrak letters
A
,
B
,
C
,
D
\mathfrak{A}, \mathfrak{B}, \mathfrak{C}, \mathfrak{D}
A,B,C,D etc.\mathfrak{A}, \mathfrak{B}, \mathfrak{C}, \mathfrak{D} etc.Math Sans serif letters
A
,
B
,
C
,
D
\mathsf{A}, \mathsf{B}, \mathsf{C}, \mathsf{D}
A,B,C,D etc.\mathsf{A}, \mathsf{B}, \mathsf{C}, \mathsf{D} etc.Math bold letters
A
,
B
,
C
,
D
\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}
A,B,C,D etc.\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D} etc.Math roman letters
A
,
B
,
C
,
D
\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}
A,B,C,D etc.\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D} etc.Math italic letters
A
,
B
,
C
,
D
\mathit{A}, \mathit{B}, \mathit{C}, \mathit{D}
A,B,C,D etc.\mathit{A}, \mathit{B}, \mathit{C}, \mathit{D} etc.Math scr letters
A
,
B
,
C
,
D
\mathscr{A}, \mathscr{B}, \mathscr{C}, \mathscr{D}
A,B,C,D etc.\mathscr{A}, \mathscr{B}, \mathscr{C}, \mathscr{D} etc.
11 Font sizes
Math Mode
SymbolCommand
∫
f
−
1
(
x
−
x
a
)
,
d
x
\int f^{-1}(x - x_a) , dx
∫f−1(x−xa),dx\int f^{-1}(x - x_a) , dx
∫
f
−
1
(
x
−
x
a
)
,
d
x
\displaystyle \int f^{-1}(x - x_a) , dx
∫f−1(x−xa),dx\displaystyle \int f^{-1}(x - x_a) , dx
∫
f
−
1
(
x
−
x
a
)
,
d
x
\textstyle \int f^{-1}(x - x_a) , dx
∫f−1(x−xa),dx\textstyle \int f^{-1}(x - x_a) , dx
∫
f
−
1
(
x
−
x
a
)
,
d
x
\scriptstyle \int f^{-1}(x - x_a) , dx
∫f−1(x−xa),dx\scriptstyle \int f^{-1}(x - x_a) , dx
∫
f
−
1
(
x
−
x
a
)
,
d
x
\scriptscriptstyle \int f^{-1}(x - x_a) , dx
∫f−1(x−xa),dx\scriptscriptstyle \int f^{-1}(x - x_a) , dx
Text Mode
SymbolCommand
h
m
c
\tiny{hmc}
hmc\tiny{hmc}
h
m
c
\scriptsize{hmc}
hmc\scriptsize{hmc}
h
m
c
\small{hmc}
hmc\small{hmc}
h
m
c
\normalsize{hmc}
hmc\normalsize{hmc}
h
m
c
\large{hmc}
hmc\large{hmc}
h
m
c
\Large{hmc}
hmc\Large{hmc}
h
m
c
\LARGE{hmc}
hmc\LARGE{hmc}
h
m
c
\huge{hmc}
hmc\huge{hmc}
h
m
c
\Huge{hmc}
hmc\Huge{hmc}
12 Math Commands
Subscripts and Superscripts
SymbolCommandSymbolCommand
3
2
3^2
323^2
b
i
b_i
bib_i
3
23
3^{23}
3233^{23}
m
i
−
1
m_{i-1}
mi−1m_{i-1}
d
3
i
+
1
d^{i+1}_3
d3i+1d^{i+1}_3
y
3
2
y^2_3
y32y^{2}_3
2
a
i
2^{ai}
2ai2^{ai}
2
(
a
i
)
2^{(a_i)}
2(ai)2^{(a_i)}
Fractions
SymbolCommand
1
2
\frac{1}{2}
21\frac{1}{2}
2
x
+
2
\frac{2}{x+2}
x+22\frac{2}{x+2}
1
+
1
x
3
x
+
2
\frac{1 + \frac{1}{x}}{3x + 2}
3x+21+x1\frac{1 + \frac{1}{x}}{3x + 2}
2
1
+
2
1
+
2
1
+
2
1
\cfrac{2}{1+\cfrac{2}{1+\cfrac{2}{1+\cfrac{2}{1}}}}
1+1+1+12222\cfrac{2}{1+\cfrac{2}{1+\cfrac{2}{1+\cfrac{2}{1}}}}
SymbolCommand
(
a
x
)
2
(\frac{a}{x} )^2
(xa)2(\frac{a}{x} )^2
(
a
x
)
2
\left(\frac{a}{x} \right)^2
(xa)2\left(\frac{a}{x} \right)^2
⌈
x
y
⌉
\left\lceil \frac{x}{y} \right\rceil
⌈yx⌉\left\lceil \frac{x}{y} \right\rceil
⌊
x
y
⌋
\left\lfloor \frac{x}{y} \right\rfloor
⌊yx⌋\left\lfloor \frac{x}{y} \right\rfloor
a
0
+
a
1
+
a
2
+
⋯
+
a
n
⏟
x
\underbrace{a_0 + a_1 + a_2 + \cdots + a_n}_x
x
a0+a1+a2+⋯+an\underbrace{a_0 + a_1 + a_2 + \cdots + a_n}_x
a
0
+
a
1
+
a
2
+
⋯
+
a
n
⏞
x
\overbrace{a_0 + a_1 + a_2 + \cdots + a_n}^x
a0+a1+a2+⋯+an
x\overbrace{a_0 + a_1 + a_2 + \cdots + a_n}^x
arg
m
a
x
1
≤
k
≤
n
λ
k
λ
k
+
1
\arg \underset{1\leq k \leq n} {max} \frac{\lambda_k}{\lambda_{k+1}}
arg1≤k≤nmaxλk+1λk\arg \underset{1\leq k \leq n} {max} \frac{\lambda_k}{\lambda_{k+1}}
Radicals
SymbolCommand
3
\sqrt{3}
3
\sqrt{3}
x
+
y
\sqrt{x + y}
x+y
\sqrt{x + y}
x
+
1
2
\sqrt{x + \frac{1}{2}}
x+21
\sqrt{x + \frac{1}{2}}
3
3
\sqrt[3]{3}
33
\sqrt[3]{3}
x
n
\sqrt[n]{x}
nx
\sqrt[n]{x}
Sums, Products, Limits and Logarithms
SymbolCommand
∑
i
=
1
∞
1
i
\sum_{i=1}^{\infty} \frac{1}{i}
∑i=1∞i1\sum_{i=1}^{\infty} \frac{1}{i}
∏
n
=
1
5
n
n
−
1
\prod_{n=1}^5 \frac{n}{n-1}
∏n=15n−1n\prod_{n=1}^5 \frac{n}{n-1}
lim
x
→
∞
1
x
\lim_{x \to \infty} \frac{1}{x}
limx→∞x1\lim_{x \to \infty} \frac{1}{x}
lim
x
→
∞
1
x
\lim_{x \to \infty} \frac{1}{x}
limx→∞x1\lim_{x \to \infty} \frac{1}{x}
log
n
n
2
\log_n n^2
lognn2\log_n n^2
Some of these are prettier in display mode:
SymbolCommand
∑
i
=
1
∞
1
i
\displaystyle\sum_{i=1}^{\infty} \frac{1}{i}
i=1∑∞i1\displaystyle\sum_{i=1}^{\infty} \frac{1}{i}
∏
n
=
1
5
n
n
−
1
\displaystyle\prod_{n=1}^5 \frac{n}{n-1}
n=1∏5n−1n\displaystyle\prod_{n=1}^5 \frac{n}{n-1}
lim
x
→
∞
1
x
\displaystyle\lim_{x \to \infty} \frac{1}{x}
x→∞limx1\displaystyle\lim_{x \to \infty} \frac{1}{x}
Mods
SymbolCommand
∑
1
i
\sum \frac{1}{i}
∑i1\sum \frac{1}{i}
∏
n
n
−
1
\prod \frac{n}{n-1}
∏n−1n\prod \frac{n}{n-1}
log
n
2
\log n^2
logn2\log n^2
ln
e
\ln e
lne\ln e
Trigonometric Functions
SymbolCommand
cos
2
x
+
sin
2
x
=
1
\cos^2 x +\sin^2 x = 1
cos2x+sin2x=1\cos^2 x +\sin^2 x = 1
c
o
s
9
0
∘
=
0
\\cos 90^\circ = 0
cos90∘=0\cos 90^\circ = 0
Calculus
SymbolCommand
d
d
x
(
x
2
)
=
2
x
\frac{d}{dx} \left( x^2 \right) = 2x
dxd(x2)=2x\frac{d}{dx} \left( x^2 \right) = 2x
∫
2
x
d
x
=
x
2
+
C
\int 2x \, dx = x^2 + C
∫2xdx=x2+C\int 2x , dx = x^2 + C
∫
1
5
2
x
d
x
=
24
\int_1^5 2x \, dx = 24
∫152xdx=24\int_1^5 2x , dx = 24
∂
2
U
∂
x
2
+
∂
2
U
∂
y
2
\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2}
∂x2∂2U+∂y2∂2U\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2}
1
4
π
∮
Σ
1
r
∂
U
∂
n
d
s
\frac{1}{4\pi}\oint_\Sigma\frac{1}{r}\frac{\partial U}{\partial n} ds
4π1∮Σr1∂n∂Uds\frac{1}{4\pi}\oint_\Sigma\frac{1}{r}\frac{\partial U}{\partial n} ds
Array environment,examples
SymbolCommand
(
2
τ
7
ϕ
−
5
12
3
ψ
π
8
)
\begin{pmatrix} 2\tau & 7\phi-\frac{5}{12} \\ 3\psi & \frac{\pi}{8} \end{pmatrix}
(2τ3ψ7ϕ−1258π)\begin{pmatrix} 2\tau & 7\phi-\frac{5}{12} \ 3\psi & \frac{\pi}{8} \end{pmatrix}
(
x
y
)
\begin{pmatrix} x \\ y \end{pmatrix}
(xy)\begin{pmatrix} x \ y \end{pmatrix}
[
3
4
5
1
3
729
]
\begin{bmatrix} 3 & 4 & 5 \\ 1 & 3 & 729 \end{bmatrix}
[31435729]\begin{bmatrix} 3 & 4 & 5 \ 1 & 3 & 729 \end{bmatrix}
(
2
τ
7
ϕ
−
5
12
3
ψ
π
8
)
(
x
y
)
a
n
d
[
3
4
5
1
3
729
]
\begin{pmatrix}2\tau & 7\phi-\frac{5}{12} \\3\psi & \frac{\pi}{8}\end{pmatrix}\begin{pmatrix}x \\y\end{pmatrix}\mathrm{and}\begin{bmatrix}3 & 4 & 5 \\1 & 3 & 729\end{bmatrix}
(2τ3ψ7ϕ−1258π)(xy)and[31435729]\begin{pmatrix}2\tau & 7\phi-\frac{5}{12} \3\psi & \frac{\pi}{8}\end{pmatrix}\begin{pmatrix}x \y\end{pmatrix}\mathrm{and}\begin{bmatrix}3 & 4 & 5 \1 & 3 & 729\end{bmatrix}
Matrices and Arrays
A=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
A
=
(
a
11
a
12
a
21
a
22
)
A= \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}
A=(a11a21a12a22)
A=
\begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix}
A
=
[
a
11
a
12
a
21
a
22
]
A= \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}
A=[a11a21a12a22]
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
\end{bmatrix}
[
1
2
3
4
5
6
]
\begin{bmatrix}1 & 2 & 3 \\4 & 5 & 6 \\\end{bmatrix}
[142536]
A=
\begin{Bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{Bmatrix}
A
=
{
a
11
a
12
a
21
a
22
}
A= \begin{Bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{Bmatrix}
A={a11a21a12a22}
A=
\begin{vmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{vmatrix}
A
=
∣
a
11
a
12
a
21
a
22
∣
A= \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}
A=
a11a21a12a22
A=
\begin{Vmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{Vmatrix}
A
=
∥
a
11
a
12
a
21
a
22
∥
A= \begin{Vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{Vmatrix}
A=
a11a21a12a22
A=
\begin{matrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{matrix}
A
=
a
11
a
12
a
21
a
22
A= \begin{matrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{matrix}
A=a11a21a12a22
\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}
a
b
c
d
e
f
g
h
i
\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array}
adgbehcfi
\mathbf{X} =
\left(
\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1n}\\
x_{21} & x_{22} & \ldots & x_{2n}\\
\vdots & \vdots & \ddots & \vdots\\
x_{n1} & x_{n2} & \ldots & x_{nn}\\
\end{array}
\right)
X
=
(
x
11
x
12
…
x
1
n
x
21
x
22
…
x
2
n
⋮
⋮
⋱
⋮
x
n
1
x
n
2
…
x
n
n
)
\mathbf{X} = \left( \begin{array}{cccc} x_{11} & x_{12} & \ldots & x_{1n}\\ x_{21} & x_{22} & \ldots & x_{2n}\\ \vdots & \vdots & \ddots & \vdots\\ x_{n1} & x_{n2} & \ldots & x_{nn}\\ \end{array} \right)
X=
x11x21⋮xn1x12x22⋮xn2……⋱…x1nx2n⋮xnn
\begin{matrix}
1 & 2 \\\\ 3 & 4
\end{matrix} \qquad
\begin{bmatrix}
x_{11} & x_{12} & \ldots & x_{1n}\\
x_{21} & x_{22} & \ldots & x_{2n}\\
\vdots & \vdots & \ddots & \vdots\\
x_{n1} & x_{n2} & \ldots & x_{nn}\\
\end{bmatrix}
1
2
3
4
[
x
11
x
12
…
x
1
n
x
21
x
22
…
x
2
n
⋮
⋮
⋱
⋮
x
n
1
x
n
2
…
x
n
n
]
\begin{matrix} 1 & 2 \\\\ 3 & 4 \end{matrix} \qquad \begin{bmatrix} x_{11} & x_{12} & \ldots & x_{1n}\\ x_{21} & x_{22} & \ldots & x_{2n}\\ \vdots & \vdots & \ddots & \vdots\\ x_{n1} & x_{n2} & \ldots & x_{nn}\\ \end{bmatrix}
1324
x11x21⋮xn1x12x22⋮xn2……⋱…x1nx2n⋮xnn
Multi-line formula alignment
\begin{split}
L(\theta)
&= \arg\max_{\theta}\ln(P_{All})\\
&= \arg\max_{\theta}\ln\prod_{i=1}^{n}
\left[
(h_{\theta}(\mathbf{x}^{(i)}))^{\mathbf{y}^{(i)}}\cdot
(1-h_{\theta}(\mathbf{x}^{(i)}))^{1-\mathbf{y}^{(i)}}
\right]\\
&= \arg\max_{\theta}\sum_{i=1}^{n}
\left[
\mathbf{y}^{(i)}\ln(h_{\theta}(\mathbf{x}^{(i)})) +
(1-\mathbf{y}^{(i)})\ln(1-h_{\theta}(\mathbf{x}^{(i)}))
\right]\\
&= \arg\min_{\theta}
\left[
-\sum_{i=1}^{n}
\left[
\mathbf{y}^{(i)}\ln(h_{\theta}(\mathbf{x}^{(i)})) +
(1-\mathbf{y}^{(i)})\ln(1-h_{\theta}(\mathbf{x}^{(i)}))
\right]
\right]\\
&= \arg\min_{\theta}\mathscr{l}(\theta)
\end{split}
L
(
θ
)
=
arg
max
θ
ln
(
P
A
l
l
)
=
arg
max
θ
ln
∏
i
=
1
n
[
(
h
θ
(
x
(
i
)
)
)
y
(
i
)
⋅
(
1
−
h
θ
(
x
(
i
)
)
)
1
−
y
(
i
)
]
=
arg
max
θ
∑
i
=
1
n
[
y
(
i
)
ln
(
h
θ
(
x
(
i
)
)
)
+
(
1
−
y
(
i
)
)
ln
(
1
−
h
θ
(
x
(
i
)
)
)
]
=
arg
min
θ
[
−
∑
i
=
1
n
[
y
(
i
)
ln
(
h
θ
(
x
(
i
)
)
)
+
(
1
−
y
(
i
)
)
ln
(
1
−
h
θ
(
x
(
i
)
)
)
]
]
=
arg
min
θ
l
(
θ
)
\begin{split} L(\theta) &= \arg\max_{\theta}\ln(P_{All})\\ &= \arg\max_{\theta}\ln\prod_{i=1}^{n} \left[ (h_{\theta}(\mathbf{x}^{(i)}))^{\mathbf{y}^{(i)}}\cdot (1-h_{\theta}(\mathbf{x}^{(i)}))^{1-\mathbf{y}^{(i)}} \right]\\ &= \arg\max_{\theta}\sum_{i=1}^{n} \left[ \mathbf{y}^{(i)}\ln(h_{\theta}(\mathbf{x}^{(i)})) + (1-\mathbf{y}^{(i)})\ln(1-h_{\theta}(\mathbf{x}^{(i)})) \right]\\ &= \arg\min_{\theta} \left[ -\sum_{i=1}^{n} \left[ \mathbf{y}^{(i)}\ln(h_{\theta}(\mathbf{x}^{(i)})) + (1-\mathbf{y}^{(i)})\ln(1-h_{\theta}(\mathbf{x}^{(i)})) \right] \right]\\ &= \arg\min_{\theta}\mathscr{l}(\theta) \end{split}
L(θ)=argθmaxln(PAll)=argθmaxlni=1∏n[(hθ(x(i)))y(i)⋅(1−hθ(x(i)))1−y(i)]=argθmaxi=1∑n[y(i)ln(hθ(x(i)))+(1−y(i))ln(1−hθ(x(i)))]=argθmin[−i=1∑n[y(i)ln(hθ(x(i)))+(1−y(i))ln(1−hθ(x(i)))]]=argθminl(θ)
\begin{split}
L(\theta)
= \arg\max_{\theta}\ln(P_{All})\\
= \arg\max_{\theta}\ln\prod_{i=1}^{n}
\left[
(h_{\theta}(\mathbf{x}^{(i)}))^{\mathbf{y}^{(i)}}\cdot
(1-h_{\theta}(\mathbf{x}^{(i)}))^{1-\mathbf{y}^{(i)}}
\right]\\
= \arg\max_{\theta}\sum_{i=1}^{n}
\left[
\mathbf{y}^{(i)}\ln(h_{\theta}(\mathbf{x}^{(i)})) +
(1-\mathbf{y}^{(i)})\ln(1-h_{\theta}(\mathbf{x}^{(i)}))
\right]\\
= \arg\min_{\theta}
\left[
-\sum_{i=1}^{n}
\left[
\mathbf{y}^{(i)}\ln(h_{\theta}(\mathbf{x}^{(i)})) +
(1-\mathbf{y}^{(i)})\ln(1-h_{\theta}(\mathbf{x}^{(i)}))
\right]
\right]\\
= \arg\min_{\theta}\mathscr{l}(\theta)
\end{split}
L
(
θ
)
=
arg
max
θ
ln
(
P
A
l
l
)
=
arg
max
θ
ln
∏
i
=
1
n
[
(
h
θ
(
x
(
i
)
)
)
y
(
i
)
⋅
(
1
−
h
θ
(
x
(
i
)
)
)
1
−
y
(
i
)
]
=
arg
max
θ
∑
i
=
1
n
[
y
(
i
)
ln
(
h
θ
(
x
(
i
)
)
)
+
(
1
−
y
(
i
)
)
ln
(
1
−
h
θ
(
x
(
i
)
)
)
]
=
arg
min
θ
[
−
∑
i
=
1
n
[
y
(
i
)
ln
(
h
θ
(
x
(
i
)
)
)
+
(
1
−
y
(
i
)
)
ln
(
1
−
h
θ
(
x
(
i
)
)
)
]
]
=
arg
min
θ
l
(
θ
)
\begin{split} L(\theta) = \arg\max_{\theta}\ln(P_{All})\\ = \arg\max_{\theta}\ln\prod_{i=1}^{n} \left[ (h_{\theta}(\mathbf{x}^{(i)}))^{\mathbf{y}^{(i)}}\cdot (1-h_{\theta}(\mathbf{x}^{(i)}))^{1-\mathbf{y}^{(i)}} \right]\\ = \arg\max_{\theta}\sum_{i=1}^{n} \left[ \mathbf{y}^{(i)}\ln(h_{\theta}(\mathbf{x}^{(i)})) + (1-\mathbf{y}^{(i)})\ln(1-h_{\theta}(\mathbf{x}^{(i)})) \right]\\ = \arg\min_{\theta} \left[ -\sum_{i=1}^{n} \left[ \mathbf{y}^{(i)}\ln(h_{\theta}(\mathbf{x}^{(i)})) + (1-\mathbf{y}^{(i)})\ln(1-h_{\theta}(\mathbf{x}^{(i)})) \right] \right]\\ = \arg\min_{\theta}\mathscr{l}(\theta) \end{split}
L(θ)=argθmaxln(PAll)=argθmaxlni=1∏n[(hθ(x(i)))y(i)⋅(1−hθ(x(i)))1−y(i)]=argθmaxi=1∑n[y(i)ln(hθ(x(i)))+(1−y(i))ln(1−hθ(x(i)))]=argθmin[−i=1∑n[y(i)ln(hθ(x(i)))+(1−y(i))ln(1−hθ(x(i)))]]=argθminl(θ)
\begin{split}
&\ln h_{\theta}(\mathbf{x}^{(i)})
= \ln\frac{1}{1+e^{-\theta^T \mathbf{x}^{(i)}}}
= -\ln(1+e^{\theta^T \mathbf{x}^{(i)}})\\
&\ln(1-h_{\theta}(\mathbf{x}^{(i)}))
= \ln(1-\frac{1}{1+e^{-\theta^T \mathbf{x}^{(i)}}})
= -\theta^T \mathbf{x}^{(i)}-\ln(1+e^{\theta^T \mathbf{x}^{(i)}})
\end{split}
ln
h
θ
(
x
(
i
)
)
=
ln
1
1
+
e
−
θ
T
x
(
i
)
=
−
ln
(
1
+
e
θ
T
x
(
i
)
)
ln
(
1
−
h
θ
(
x
(
i
)
)
)
=
ln
(
1
−
1
1
+
e
−
θ
T
x
(
i
)
)
=
−
θ
T
x
(
i
)
−
ln
(
1
+
e
θ
T
x
(
i
)
)
\begin{split} &\ln h_{\theta}(\mathbf{x}^{(i)}) = \ln\frac{1}{1+e^{-\theta^T \mathbf{x}^{(i)}}} = -\ln(1+e^{\theta^T \mathbf{x}^{(i)}})\\ &\ln(1-h_{\theta}(\mathbf{x}^{(i)})) = \ln(1-\frac{1}{1+e^{-\theta^T \mathbf{x}^{(i)}}}) = -\theta^T \mathbf{x}^{(i)}-\ln(1+e^{\theta^T \mathbf{x}^{(i)}}) \end{split}
lnhθ(x(i))=ln1+e−θTx(i)1=−ln(1+eθTx(i))ln(1−hθ(x(i)))=ln(1−1+e−θTx(i)1)=−θTx(i)−ln(1+eθTx(i))
\begin{align}
&\ln h_{\theta}(\mathbf{x}^{(i)})
= \ln\frac{1}{1+e^{-\theta^T \mathbf{x}^{(i)}}}
= -\ln(1+e^{\theta^T \mathbf{x}^{(i)}})\\
&\ln(1-h_{\theta}(\mathbf{x}^{(i)}))
= \ln(1-\frac{1}{1+e^{-\theta^T \mathbf{x}^{(i)}}})
= -\theta^T \mathbf{x}^{(i)}-\ln(1+e^{\theta^T \mathbf{x}^{(i)}})
\end{align}
ln
h
θ
(
x
(
i
)
)
=
ln
1
1
+
e
−
θ
T
x
(
i
)
=
−
ln
(
1
+
e
θ
T
x
(
i
)
)
ln
(
1
−
h
θ
(
x
(
i
)
)
)
=
ln
(
1
−
1
1
+
e
−
θ
T
x
(
i
)
)
=
−
θ
T
x
(
i
)
−
ln
(
1
+
e
θ
T
x
(
i
)
)
\begin{align} &\ln h_{\theta}(\mathbf{x}^{(i)}) = \ln\frac{1}{1+e^{-\theta^T \mathbf{x}^{(i)}}} = -\ln(1+e^{\theta^T \mathbf{x}^{(i)}})\\ &\ln(1-h_{\theta}(\mathbf{x}^{(i)})) = \ln(1-\frac{1}{1+e^{-\theta^T \mathbf{x}^{(i)}}}) = -\theta^T \mathbf{x}^{(i)}-\ln(1+e^{\theta^T \mathbf{x}^{(i)}}) \end{align}
lnhθ(x(i))=ln1+e−θTx(i)1=−ln(1+eθTx(i))ln(1−hθ(x(i)))=ln(1−1+e−θTx(i)1)=−θTx(i)−ln(1+eθTx(i))
Groups of equations
\begin{cases}
\begin{split}
p &= P(y=1|\mathbf{x})=
\frac{1}{1+e^{-\theta^T\mathbf{X}}}\\
1-p &= P(y=0|\mathbf{x})=1-P(y=1|\mathbf{x})=
\frac{1}{1+e^{\theta^T\mathbf{X}}}
\end{split}
\end{cases}
{
p
=
P
(
y
=
1
∣
x
)
=
1
1
+
e
−
θ
T
X
1
−
p
=
P
(
y
=
0
∣
x
)
=
1
−
P
(
y
=
1
∣
x
)
=
1
1
+
e
θ
T
X
\begin{cases} \begin{split} p &= P(y=1|\mathbf{x})= \frac{1}{1+e^{-\theta^T\mathbf{X}}}\\ 1-p &= P(y=0|\mathbf{x})=1-P(y=1|\mathbf{x})= \frac{1}{1+e^{\theta^T\mathbf{X}}} \end{split} \end{cases}
⎩
⎨
⎧p1−p=P(y=1∣x)=1+e−θTX1=P(y=0∣x)=1−P(y=1∣x)=1+eθTX1
\text{Decision Boundary}=
\begin{cases}
1\quad \text{if }\ \hat{y}>0.5\\
0\quad \text{otherwise}
\end{cases}
Decision Boundary
=
{
1
if
y
^
>
0.5
0
otherwise
\text{Decision Boundary}= \begin{cases} 1\quad \text{if }\ \hat{y}>0.5\\ 0\quad \text{otherwise} \end{cases}
Decision Boundary={1if y^>0.50otherwise
Reference
LaTeX:symbol
LaTeX:command
lshort-zh-cn
CSDN:Latex数学公式符号大全(超详细)
CSDN:LaTex符号大全(LaTeX_Symbols)
Last
若您发现文中存在任何不准确或错误的地方,欢迎提出宝贵意见,笔者将会尽快修正并改进。同时,若本文中的任何内容无意中侵犯了某些个人或机构的版权或知识产权,笔者深感抱歉,并愿意及时处理相关事宜,删除或修改相关部分。
本笔记内容仅供学习和交流使用,任何商业用途或其他非法使用行为,请务必遵守相关法律法规,并获得原作者授权。